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Abstract

A set of parallel ducts of various cross-sections in a diffuse opaque solid medium is modeled as a continuous ab-
sorbing and isotropically scattering porous medium. Simple expressions of the absorption and scattering coefficients of
this equivalent medium have been determined by identification of the Fourier transforms of the radiative power per unit
volume, obtained from the continuous medium model and from a reference local model, in the case of an infinite
system. Comparisons of radiative transfer results of the continuous medium model with those of the local model have
been carried out for finite configurations typical of combustion applications. Typical discrepancies of a few percent have
been observed both for the radiative power per unit volume and boundary radiative flux calculations. The continuous
medium model, although practically equivalent to the local model, leads to much faster computation. © 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Many recent studies, e.g. [1-9], deal with combustion
within porous media and a survey has been given by
Howell et al. [1]. It has been emphasized that the radi-
ative transfer inside the porous medium plays an im-
portant role in the flame stabilization [2,5] and that
scattering effects cannot be neglected [3]. In particular,
radiative loss plays a prominent role in the case of
radiative porous heaters.

The modeling of the radiative transfer at a micro-
scopic scale in a porous structure, taking into account
absorption and reflection phenomena, can be difficult.
Consequently, a porous medium is often treated as a
continuous homogeneous absorbing and scattering me-
dium. Different types of radiative methods have been
used. A simple model consists of linearizing the radiative
transfer inside the porous medium by considering an
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equivalent conductivity that takes into account both
absorption and scattering at the optically thick medium
limit [8,10]. If the porous medium is considered as
nonscattering, the radiative transfer equation can be
solved by using E, functions [5,11]. Radiative transfer
can also be treated by a P, method, e.g. [2,3,6], a discrete
ordinates method, e.g. [12], or a S, method [13]. The
classical Schuster—Schwarzschild method [14-16] allows
scattering to be simply accounted for [4,17]. Many
radiative models have been detailed by Kaviany [18]. In
all these methods, the absorption and scattering coeffi-
cients and the phase function are assumed to be known.
In practice, they are estimated from either simple geo-
metrical considerations, experimental studies, e.g. [1,19]
or from a Monte Carlo approach, e.g. [20].

The present paper deals only with radiative transfer
in a set of parallel diffuse opaque ducts used, for in-
stance, in catalytic burners. As the system structure is
simple, radiative transfer can be modeled at the local
duct scale from the incident and leaving intensity
method [16,21]. But the implementation of this ap-
proach, referred to here as the local model, requires an
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Nomenclature

o =2/Ry interfacial area per unit volume of the
fluid phase

E least-square error

3 relative discrepancy

fdx F,g view factors

1, spectral radiative intensity

k length to width ratio for a rectangular

cross-section

/ characteristic length of a cross-section

Dy spectral phase function

P, spectral radiative power per unit
volume of the fluid phase

P cross-section perimeter

4 cross-section area

Ry =2%/2 hydraulic radius

T temperature

x,x position in the direct space
X=x—-x distance in the direct space
Xt =X/I nondimensional distance

Greek symbols
p, =1, + 0, spectral extinction coefficient
€ spectral emissivity

y =+/2Ryf  nondimensional parameter

Ky spectral absorption coefficient

w conjugated variable in the Fourier
space

n porosity of the medium

ay spectral scattering coefficient

ap Stefan constant

Subscripts

m optimal coefficient (least-square
minimization)

v spectral

w, 1,2 wall, left wall, right wall

Superscripts

e emitted

i incident

1 leaving

+ characterizing the propagation in the

xT direction
- characterizing the propagation in the
x~ direction
Fourier transformed function

significant CPU time, which is a major drawback when
many iterations have to be carried out due to the cou-
pling of radiation with conduction, convection and
combustion in the considered application. Conse-
quently, a much faster approach, based on an equivalent
homogenized continuous medium, characterized by a
porosity and considered to emit, absorb and scatter ra-
diation, has been developed here.

The first aim of this work, developed in Section 2, is
to characterize the absorption and scattering coefficients
of the equivalent continuous medium from the actual
properties of the ducts. Four configurations of tem-
perature fields and thermal boundary conditions, typical
of actual systems, are then considered in order to vali-
date the continuous approach by comparison with the
local model. The radiative power per unit volume of the
fluid phase and the radiative fluxes at the boundaries,
calculated by the two approaches, are compared in
Section 3. Finally, conclusions are drawn.

2. Identification method

The system considered in this section is an infinite
opaque solid medium of spectral diffuse emissivity e,,
with a set of parallel ducts of constant cross-section
(circular, rectangular or regular polygonal) passing
through, as shown in Fig. 1. The characteristic width of

o 00 Tla) o b T(=)
L. 1
: i AN,
x 2 T —\U‘r‘f’

axial section cross-section

Fig. 1. Definition of the considered system.

a cross-section is /. The gas which flows through the
ducts is assumed tranparent. Indeed, for the catalytic
burners considered here, the product of the absorbing-
emitting gas partial pressure by a typical length of the
system is less than 1073 m atm; in these conditions ab-
sorption is negligible [22].

Radiative transfer in such a system can be calculated
by two approaches : (i) directly, from the determination
of the incident and leaving spectral intensities at the duct
walls (local approach); (ii) by a simple transfer model
applied to an equivalent continuous medium character-
ized by the absorption and scattering coefficients x, and
g, and an isotropic phase function. This model will be
discussed later. x, and o, have to be expressed in terms
of ¢, and / by identification of the expressions of the
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radiative power per unit volume of the fluid phase ob-
tained by the two previous approaches. The choice of an
infinite system eliminates the boundary condition
problem, studied in Section 3.

The spectral radiative power per unit volume of the
fluid phase, P,(x), is written, in the local approach

P(x) = o/n[li(x) — I)(x)], (1)

where .o/ is the interfacial area per unit volume of fluid
and /!(x) and 7i(x) are respectively the leaving and in-
cident isotropic intensities, at a point x of a duct, given
by [16,21]

@) = 612 + (1 — e)I(), @)
nw = / Fr—E)dd = (f o 1) (), 3)

where /°(x) is the equilibrium intensity at the point x, of
temperature 7'(x), and f(x —x’)dx the differential view
factor between two differential ring elements (x,x + dx)
and (x',x’ + dx’). Taking the Fourier transform which is
defined for any function A(x)

h(w) :K foh(x) exp(—2mjowx) dx, 4)
leads to the expression
_ e[l- ()]
Py = —————=——nl}(7)(v), (5)

I—(1—e)f ()

which is the direct solution of the problem in Fourier
space.

On the other hand, an expression similar to Eq. (5)
can be obtained from the continuous medium approach
and the Schuster-Schwarzschild [14-16,18] simple
model. This model assumes that intensity is isotropic in
the two half spaces corresponding to x* and x~ propa-
gating directions, as shown in Fig. 1. The corresponding
values are called /" and I, respectively.

In the continuous medium approach, the choice of an
isotropic phase function is justified by the following: (i)
as the actual geometry and duct reflectivity are sym-
metrical with respect to a plane perpendicular to the
ducts, the phase function is symmetrical; (ii) an isotropic
phase function is consistent with the choice of the
Schuster—Schwarzschild method in which only hemi-
spherical fluxes are considered; (iii) the hypothesis of
isotropic scattering is consistent with diffuse duct re-
flectivity.

All the previous assumptions lead to a system of two
coupled averaged radiative transfer equations [16,21],

d1+

d; = 28,17 + 2,10 (x) + (B, — k) (IS + 1), (6)
dr;-

=S = 2B AW + (B - ) L), ()

where f, is the extinction coefficient (f5, = k, + a,).
The radiative power per unit volume of the fluid
phase averaged over a representative volume element
is then

..
P, = —na(lv -1) ®)

and, after taking the Fourier transform, we obtain

~ 4x, 7 0?
P=——" " o . 9

T o D) ©)
The solution for k, is simple if we consider the two
following expressions of the emitted spectral power per
unit volume of the fluid phase:

P = ofme 0 (T) = 4nw, I (T), (10)
which lead to
K, = e, /4. (11)

It is worth noting that this result can also be obtained by
identification of Eqgs. 5 and 9 at the infinite w limit,
which corresponds in the direct space to local properties
and for which f(w) — 0.

In order to obtain f3,, the expressions of the radiative
power per unit volume of the fluid phase, given by Egs.
(5) and (9), are identified, which leads to

f= 1/(1 + e e’/ Bk,) (12)
and, after taking the inverse Fourier transform, to
F(X) = /Bors Jer exp ( N /ax), (13)

where X designates |x' —x|. f(X) can also be directly
obtained from g(X), the view factor between two cross-
section areas of a cylindrical duct,
7 &

Fx) =2 S5 (), (14)
where ¥ and 2 are respectively the area and the
perimeter of the cross-sections. f(X) can be expressed
analytically or numerically for circular, rectangular
[16,21], and polygonal [23] cross-sections. We obtain an
expression of f§,, for each geometry, after identification
of Egs. (13) and (14).

These expressions are now written in a nondimen-
sional form by introducing the hydraulic radius
Ry, =2%/% and the nondimensional length X+ =
X/Rh = |x’ *X|/Rh, i.e.
2Rf(X+)—£(X+)—~ —pX 15

V) = 15 () = yexpl-px] (15)
in which 7y is a nondimensional parameter that is inde-
pendent of radiation frequency

y = 2R/ B.Ky/ € = Run/ AP (16)
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Table 1
Y Values for a rectangular section
k Vm 100E ()
1 1.05 7
2 1.07 6
5 1.12 5
10 1.14 6
100 1.17 8
00 1.18 8
Table 2
7m values for different cross-sections
Triangle 1.06 2
Square 1.06 1.4
Pentagon 1.05 1.5
Hexagon 1.05 1.5
Octagon 1.07 39
Circle 1.05 3

Consequently, f§ is also independent of radiation fre-
quency.

For a given geometry, Egs. (5) and (9) lead to iden-
tical results if there is a y,, value such as y,, exp[—y,X ]
is approximately equal to 2R,f(X*) in the variation
range of X*, as developed in Appendix A. The optimal
Ym Value is obtained by a least-square-fit method, i.e., by

minimizing the quantity

00 (Yt WY N2 A Y+ 1/2
E(v)—{f0 [ZR}J(O)O( )_yeXp(z_/X JFax } . (17)
Jo 2Ruf(X+)] dx+

In these conditions, the expressions of k,, , and o, in
terms of ¢, and R;, become

ko= a/QR), B=73/CR, = (% —6)/(2R):
(18)

The view factor expressions for the considered con-
figurations are given in Appendix A. Optimized values
7m are given in Table 1 for rectangular cross-sections
and in Table 2 for regular polygonal and circular cross-
sections. Discussions related to the method of determi-
nation of y,, are reported in Appendix A.

In conclusion, as shown in Tables 1 and 2, for aspect
ratio values that are not too large, a reccommended value
of 7, is 1.05. The extinction length ™', given by Eq.
(18), is then equal to Hottel’s equivalent radius for an
infinite cylinder 1.8Ry, [16,21]. This surprising result can
be easily understood in the case p,=1—¢, =1 (ex-
tinction is only due to diffuse reflection).

3. Comparison of the two model results

The local and the continuous medium models are
implemented in this section for the following system : (i)

the set of cylindrical ducts, of porosity IT lies between
x=0and x =L = 1 cm. A transparent fluid flows in this
set of identical parallel ducts of circular cross-sections of
radius Ry; (ii) the solid phase is gray, of emissivity €; K
and ¢ are obtained from Eq. (18) and Table 2; (iii) the
solid phase is characterized by a temperature profile
T(x); (iv) the cylindrical ducts lay between two gray
opaque walls of respective temperatures 77 and 73, and
diffuse emissivities ¢, and ¢,, respectively, as shown in
Fig. 2.

In the local model, we consider the isotropic inten-
sities leaving and entering a duct at x = L, called /! and
1, respectively, i.e.

I = 6,I°(Ty) + (1 — &)L, (19)

I = / ' F(x — L)I'(x)2dx/Ry + F(0 — L)1, (20)

where I} is the entering intensity at x = 0 and 7} the in-
cident intensity at wall 2

L=10I + (1 — M{el°[T(L)] + (1 — e)I } (21)

and where F(x — L) and F(0 — L) are the view factors
between a differential ring element dx and the cross-
section area x = L, and between the two cross-section
areas x = 0 and x = L, respectively. It is worth noting
that I'(x) in Eq. (20) depends also on /i and I}, by Eq. (2)
and on the modified expression of Eq. (3), i.e.

fi(x) = /0 (=X ) A 4 F (e — )} + F(x — L)1
(22)

In Egs. (19)-(22), we have assumed that the incident and
leaving intensities are uniform and isotropic at x =0,
x =L and at boundary walls. Similar boundary con-
ditions are considered at x = 0. Finally, for a given
temperature field, the whole set of boundary conditions
leads to a complex system of linear equations for 71, I,
I, 1.

For the equivalent absorbing and scattering medium,
the boundary condition at the cross-section x = L is

tyansparent dudgylzndmcal
as T(x)
x Z

Ty T,

€1 €2

lem

Fig. 2. The finite configuration.
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given by Egs. (19) and (21) if /(L) and 7~ (L) are sub-
stituted to 7! and I!, respectively.

In order to validate the continuous medium model in
comparison to the local model, four configurations are
considered in the following, characterized by different
temperature fields in the ducts, and different opaque wall
temperatures, as shown in Fig. 3. The two last config-
urations are typical of combustion. Other parameters
are defined by IT1=0.85 ¢=0.5, R, =5 x 1072 cm,
=09, ¢£=09 and L=1 cm, which leads to
k=5cm™',0=6cm ! and f =11 cm™". The first case
deals with an isothermal system between two cold walls;
case 2 with a system characterized by a large tempera-
ture gradient at x = 0.5 cm; the boundary conditions are
chosen in such a manner that the radiative fluxes at the
walls are weak. In case 3, the temperature field is
the same as in case 2, but the boundary conditions are
chosen in such a manner that the radiative fluxes at the
right opaque wall are significant. Case 4 deals with a
temperature gradient close to a wall. The highest tem-
perature for each configuration is Ty, = 1500 K.

For each configuration, the radiative power per unit
volume of fluid obtained with the continuous medium
approach, called Py, (x), is compared: (i) with the cor-
responding result obtained with the standard local
model, considered as reference and called P.(x); (ii)
with the result obtained with a local model using the
approximate differential view factor given by Eq. (15),
called P,(x). This last approach is considered in order to
emphasize the contribution of the approximate expres-
sion of the view factor (Eq. (15)) to the global error
introduced by the continuous medium model. The total
nondimensional radiative power per unit volume of fluid
P = P/ (AeapTe. ) obtained with the reference local
approach is plotted in Figs. 4-7. The relative discrep-

ancies obtained with the approximate local model and

Configuration 1 Configuration 2

1500K 1500K
1 | |
| | | 11 |
| | | 500K/ |
| | I [ |
- o o oo !
g 8 58 |8 5 =3 5%
S (=} = IsXs] (=1
~ ~ g8 =
Configuration 3 Configuration 4
1500K 1500K
| | I |
| 1 | 1004
| 500K /| | | 1320K
i [ | i |
'S oo ! 'd'o !
a =] e =} a [ QL o
g B &3 g 3 g Bf B 3
= 58 = = =

Fig. 3. The four configurations studied.
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Fig. 4. Configuration 1. Nondimensional radiative power per
unit volume of fluid P} obtained with the standard local model
(- ) and relative discrepancies &, (0) and &, (A) vs x in the
medium.
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Fig. 5. Configuration 2. Nondimensional radiative power per
unit volume of fluid P, obtained with the standard local model
(- ) and relative discrepancies &, (0) and & (A) vs x in the

medium.

the continuous medium model, &, = |P,(x) — Pt
(x)|/P2 and o = |Pan(x) — P, (x)] /P2, where P is
the maximal value of P, are also plotted. For these
calculations 5000 regularly spaced grid points, have been
used.

Figs. 4-7 show that, in all considered cases, &, is
always much larger than &, but typically less than 0.03.
The continuous medium model accuracy is only limited
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Fig. 6. Configuration 3. Nondimensional radiative power per
unit volume of fluid P, obtained with the standard local model

(- ) and relative discrepancies &, (0) and &, (A) Vs x in the
medium.

by the accuracy of the approximate view factor expres-
sion (Eq. (15)). Indeed, the actual view factor cannot be
rigorously replaced by an exponential law. The main
advantage of the continuous medium model is that it
requires a computation time proportional to N, the
number of grid points, without iteration. On the other
hand, the local approach requires multiple iterations and
a computation time proportional to N2 per iteration.
The values of the nondimensional radiative flux
" /(03T ) obtained with the three approaches are
given in Table 3. No significant discrepancy appears
between the continuous medium model and the local
model based on Eq. (15). The continuous medium model
leads to accurate flux results for configurations 1, 3 and
4, when wall fluxes are large. The relative discrepancy
|Pem — Prerl/ Prer 18 less than 0.03 for these cases. When
the boundary flux is practically null (configuration 2 and
left side of configuration 3), the relative discrepancy is
large, but this case is without practical importance. This

0.02

0.01

Fig. 7. Configuration 4. Nondimensional radiative power per
unit volume of fluid P, obtained with the standard local model

(- ) and relative discrepancies &, (0) and e (A) vs x in the
medium.

discrepancy results from discrepancy between Eq. (15)
and the actual view factor expression for large x values.

4. Conclusion

This study has shown the practical equivalence be-
tween a Schuster—Schwarzschild model applied to an
equivalent homogenized continuous medium and a
reference local model to calculate radiative transfer in a
set of ducts passing through an opaque solid medium
at high temperature. Absorption and scattering coeffi-
cients of the equivalent isotropically scattering contin-
uous medium have simple expressions. The
approximated model leads to a typical relative accuracy
of a few percent and only requires a CPU time pro-
portional to N, the number of grid points, without it-
eration, instead of N? per iteration in the case of the
reference model.

Table 3
Nondimensional radiative flux ¢f/(c3T2, ) at the two opaque walls
Case 1 Case 2 Case 3 Case 4
Left Right Left Right Left Right Left Right
Standard local 0.712 0.712 8.56 x 1073 1.04 x 1072 6.67 x 1073 0.704 0.308 0.444
model
Approximate 0.708 0.708 43x 107 7.7 x 107 43 %107 0.708 0.298 0.438
local model
Continuous 0.708 0.708 43x 107 7.7 x 107 43 %107 0.708 0.299 0.439

medium model
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Appendix A

For ducts of circular cross-sections, the view factor
g(Xt)is [16,21]

gar(X) = (2447 = Vax= +x+) 2 (A1)

Direct results of the optimization defined by Eq. (17)
and obtained by using Eq. (14) are reported in Table
2.

For ducts of rectangular cross-sections, the view
factor between two rectangles of length L and width
W = kL is given by [16,21]

y=Ww/X,
z=L/X,
Gree(y,2) = (In [(1+)))(14+2) /(1 +y* +2)]) /(=)

(
[\/ 1422 tan”! <y/\/ 1+ 22
[V (T

—2tan'(y)/(nz) — 2tan”' (z)/(my).

+2
+2

~——

(A2)

Direct results of the optimization defined by Eq. (17)
and obtained by using Eq. (14), for different values of &
are reported in Table 1. When k& — oo, Eq. (A.2) be-
comes [16,21] gpa(X*) =V1+X+ —X*. Results are
reported in Table 1.

For ducts of regular polygonal cross-sections (trian-
gle, square, pentagon, hexagon, octagon), the analytical
expression of g(X™) is too complex to be used, but these
view factors have been tabulated by Feingold [23] as
shown in Fig. 8. It appears that the expressions of these
view factors are close to Eq. (A.1) related to circles.
Consequently approximate expressions g*(X*) of
Zpol(X), for ducts of regular polygonal cross-sections,
have been established under a form close to Eq. (A.1),
ie.

gt = (al + azX+2 —Va X+t + a4X+4)/2 (A.3)

by a discrete least-square fitting method. For the con-
figurations considered [[;"(g —g") dXx*/ [* g?dx*]"?
is lower than 0.04. This procedure applied to circular
cross-section leads to Eq. (A.1) with a typical relative
accuracy of 0.01 on parameters a;.

In a second step, the values y;, which minimize the
criterion

1 A
A Triangle
08 O Square
* Pentagon
—~ 06 & Hexagon
Ti:,o 8 o Octagon

Fig. 8. View factors for regular polygons.

N 2N 1/2
3, [ /ax () = v exp (= 77X

>, [d6/dx+ ()]

E(y) =

(A4)

have been calculated and reported in Table 2.
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